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Abstract. We predict an efficient electronic energy transfer from an excited semiconductor quantum well to
optically active organic molecules of the nearby medium (substrate and/or overlayer). The energy transfer
mechanism is of the Förster type and, at semiconductor-organic distances of about 50 Å, can easily be
as fast as 10–100 ps, which is about an order of magnitude shorter than the effective exciton lifetime in
an isolated quantum well. In such conditions, the Wannier-Mott exciton luminescence is quenched and
the organic luminescence is efficiently turned on. We consider both free as well as localized quantum well
excitons discussing the dependence of the energy transfer rate on temperature and localization length. A
similar mechanism for the non-radiative energy transfer to the organic overlayer molecules from unbound
electron-hole pairs excited in the 2D continuum is shown to be much less competitive with respect to other
relaxation channels inside the inorganic quantum well (in particular, 2D exciton formation).

PACS. 71.35.Aa Frenkel excitons and self-trapped excitons – 78.20.Bh Theory, models, and numerical
simulation – 78.66.Qn Polymers; organic compounds

1 Introduction

A large effort has recently been devoted to the study of or-
ganic light emitting diodes [1] and lasers [2]. Förster-like
energy transfer between different dye molecules in solid
solutions has already been used to achieve light amplifi-
cation in optically pumped organic thin films [3]. How-
ever, light emitting organic materials have poor transport
properties compared to inorganic semiconductors and to
achieve efficient electrical pumping of such devices is a
challenging problem. Prompted by the rapid advances of
epitaxial growth techniques for crystalline molecular ma-
terials on different organic or inorganic substrates, we con-
sider here a novel hybrid configuration in which both in-
organic semiconductors and organic materials are present:
the basic idea is to pump the optically active organic
molecules via electronic energy transfer from the two-
dimensional (2D) Wannier-Mott excitons of a semiconduc-
tor quantum well (QW). Hopefully, in this hybrid system,
it would be possible to use the efficient electrical pump-
ing of the inorganic semiconductor material to produce
luminescence in the organic one.

In organic-inorganic heterostructures, in fact, it is
possible to take advantage of the complementary func-
tional properties of both types of materials. This has been
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shown to be the case, for instance, in the coherent hybrid
Wannier-Mott/Frenkel excitons at a covalent-semiconduc-
tor/molecular-solid interface [4]. Such novel excitons have
both the large radius of a Wannier-Mott exciton and the
large oscillator strength of a Frenkel exciton. They have
also been shown to possess large optical nonlinearities [5].
The focus of the present paper is on the basic physics gov-
erning the resonant electronic energy transfer from the
electronic excited states of the semiconductor quantum
well to the excited states of the organic material. While
the former have a spatially coherent wavefunction extend-
ing over many unit cells (both in the case of free excitons
and electron-hole pairs characterized by a center of mass
2D wavevector and in the case of localized excitons de-
scribed by a slowly varying envelope function), the latter
are in general strongly scattered by phonons (incoherent
excitons). Usually, the relaxation of the final excited states
in the organics is much faster then the back transfer rate
(of course, the interesting case is when the luminescence
quantum yield of the organics is high); in this respect,
our considerations correspond to the Förster picture of
energy transfer. Our model calculations, combining a mi-
croscopic quantum well model with a macroscopic electro-
dynamical description of the organic medium, take into
account the dielectric constant discontinuities and can be
applied to any multilayer structure. Employing realistic
material parameters, the energy transfer mechanism we
consider is shown to be fast enough to efficiently quench
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Fig. 1. Schematic inorganic semiconductor QW (thin lines)
and organic medium (thick lines) absorption (dashed lines) and
luminescence (solid lines) spectra. Notice the overlap of the
QW exciton luminescence peak and the broad organic medium
absorption.

the Wannier-Mott exciton luminescence and to turn on
the organic molecule light emission.

The configuration we consider consists of a semi-
conductor quantum well sandwiched between two semi-
conductor barriers, the whole semiconductor structure
embedded in a bulk-like organic material (for the sake
of simplicity, we choose a symmetric configuration and
consider the organic material to be isotropic). The back-
ground dielectric constant of the semiconductor material
is taken to be real, whereas the total dielectric constant
of the organic material has both a real and an imagi-
nary part in the frequency region of interest. In fact, we
are interested in an organic material having a broad ab-
sorption band in the optical range overlapping with the
two-dimensional Wannier-Mott exciton sharp resonance,
as sketched in Figure 1. The Förster-like energy transfer
rate due to the dipole-dipole interaction can be calculated
simply from the Joule losses [6] in the organic material (for
the details see Sect. 2 of the present work). These are pro-
portional to the imaginary part of the dielectric function
and are produced by the penetration into the organics of
the electric field generated by the semiconductor exciton
polarization (explicitly taken into account as a source term
in the macroscopic electrostatic equations). Neglecting re-
tardation is a valid approximation as the typical exciton
center of mass in-plane wavevector is much larger than
the wavevector of the corresponding resonant light. We
also assume to be in the linear regime in which excitons
can be described in the bosonic approximation.

In the present work after the general discussion of
the approach used (Sect. 2), we consider three cases: a
free exciton in a perfect QW, translationally invariant
in two dimensions (Sect. 3) (this case for the L-exciton
has already been considered in the short publication [7]);

an exciton, localized due to the QW width fluctuations
(Sect. 4); quasi-thermalized free electron-hole pairs in a
perfect QW (Sect. 5).

2 Dipole-dipole mechanism of energy
transfer: general relations

In this section we justify the macroscopic approach to
the problem of the dipole-dipole energy transfer from
a 2D semiconductor subsystem to a bulk-like organic
subsystem.

We restrict ourselves to the linear approximation,
therefore, we only need to consider the behaviour of a
single electron-hole pair in the semiconductor QW. Conse-
quently, we consider only two states in the semiconductor
subsystem, |0〉 – the ground state and |e, h〉 – the excited
state, a single electron-hole pair described by the envelope
function ψ(re, rh), and the conduction and valence band
extrema Bloch functions uc(re) and uv(rh), where re, rh
are the positions of the electron and the hole. The spin
part is not explicitly considered and can be introduced if
needed. The normalization is assumed to be∫

d3re d
3rh |ψ(re, rh)|2 = 1. (1)

We do not specify the form of ψ, it may be the wave func-
tion of a 1s-exciton, moving as a whole with the center-of-
mass momentum ~K, that of a localized exciton, or just
a direct product of two 2D plane waves, corresponding
to the free carriers (if needed, the in-plane normalization
area S may be introduced). The Hamiltonian describing
such a pair is:

Ĥe,h = |e, h〉 ~ω 〈e, h|+ |0〉 0 〈0| , (2)

~ω being the energy of the e-h pair in the excited state
under consideration.

The operator of the QW polarization is

P̂QW (r) = dvc ψ(re, rh)
∣∣∣
re=rh=r

|0〉 〈e, h|+ h.c. , (3)

where

dvc =

∫
u.c.

u∗v(r)(−er)uc(r) d3r (4)

is the matrix element of the electric dipole moment be-
tween the conduction and valence bands (the integration
is performed over the unit cell). Its Cartesian components
dvci (i = x, y, z) may be expressed in terms of the Kane’s
energy E0 [8]:

|dvci |
2 =

e2~2E0c
2
i

2m0E2
g

, (5)

where m0 is the free electron mass, Eg is the energy gap
and ci is the appropriate symmetry coefficient. In semicon-
ductors of the zinc-blende structure chhx = chhy = 1/

√
2,
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chhz = 0 (heavy holes) and clhx = clhy = 1/
√

6, clhz =
√

2/3
(light holes).

We assume that the excitations in the organic medium
(crystalline or amorphous) because of strong dissipation or
spatial disorder cannot be characterized by a wave vector.
In this case, the excitations in the organics are localized,
thus corresponding to the excited states of a molecule or
a group of strongly coupled molecules. Thus, the organic
subsystem may be described by the ground state |g〉, and
the excited states |R, ν〉, where R is the position of the
excited state and ν is a quantum number (or a set of quan-
tum numbers), labeling the excited states at the point R.
As we restrict ourselves to the linear regime, only “one-
particle” excited states will be considered, which means
that two excitations |R, ν〉 and |R′, ν′〉 are not allowed to
exist simultaneously. For isolated molecules ν is discrete
(an integer, enumerating the energy levels of a molecule).
However, since we are going to describe a dissipative pro-
cess, we need to consider a continuum of states (corre-
sponding to the broadening of the molecular levels, which
is always present in real media). Therefore, ν must be
some continuous quantum number, describing a contin-
uous spectrum, determined by the particular dissipation
mechanism, which is not necessary to specify here. We use
the following normalization of the states

〈g|g〉 = 1 , (6)

〈g|R, ν〉 = 0 , (7)

〈R, ν|R′, ν′〉 = δ(ν − ν′) δ(R−R′) , (8)

1̂org = |g〉〈g|+

∫
d3R

∫
dν |R, ν〉〈R, ν| , (9)

where 1̂org is the unit operator for the organic subsystem.
In general, the excited states ν may be arranged in differ-
ent ways at different points R, and the set of parameters
ν as well as the integration range may vary from point
to point. We will not introduce this dependence in an ex-
plicit way, but we should keep in mind that the order of
integration in (9) cannot be changed. The Hamiltonian of
the organic medium is written as

Ĥorg = |g〉 0 〈g|+

∫
d3R

∫
dν |R, ν〉Eν(R) 〈R, ν| .

(10)

The operator of the organic medium polarization (dipole
moment per unit volume) is

P̂org(R) =

∫
dν |R, ν〉 dν(R) 〈g|+ h.c. , (11)

where dν(R) is the matrix element of the dipole moment
between the excited and the ground state, generally speak-
ing, including the contributions of both electrons and
nuclei:

dν(R) = 〈R, ν|
∑
i

(−eir̂i)|g〉 , (12)

where ei and r̂i are the charge and the position operator
of the ith charge in the medium and the sum is taken over
all charges, constituting the medium.

We neglect the retarded interaction, since the typical
length scales of our problem are of the order of 100 Å,
which is much less then the resonant light wavelength (or,
equivalently, the typical value of the exciton wave vector is
much larger than that of the resonant light). The Hamilto-
nian of the Coulomb dipole-dipole interaction between the
QW and the organic medium, responsible for the energy
transfer, is

Ĥint = −

∫
d3R (P̂org(R) · Ê(R)) , (13)

where Ê(R) is the operator of the electric field, produced

by the QW polarization P̂QW (r). The relation between
the latter two operators is the same as between the corre-
sponding classical quantities in the electrostatics of con-
tinuous media (namely, the electric field is obtained from
the polarization via the appropriate Green’s function).

The decay rate (inverse lifetime) of the electron-hole
pair is given by the Fermi Golden Rule [9]:

1

τ
=

2π

~

∫
d3R

∫
dν |dν(R) · Evc(R)|2 δ(Eν − ~ω) ,

(14)

where Evc(R) = 〈0|Ê(R)|e, h〉. Considering the general
expression for the dielectric function [10], which in our
normalization of states may be written as

εij(R, ω) = δij − 8π

∫
dν

Eν(R) dνi (R)
(
dνj (R)

)∗
(~ω)2 − (Eν(R))2 + iηω

,

(15)

where the infinitesimal η −→ +0 prescribes the position
of the poles in the lower complex half-plane of ω, the ex-
pression above may be identically rewritten as

1

τ
=

1

2π~

∫
d3R Im εij(R, ω) Evci (R)

(
Evcj (R)

)∗
, (16)

where εij(R, ω) is the dielectric function of the absorbing
organic medium. Note that the equation (16) multiplied
by the energy of the excitation ~ω coincides with the ex-
pression for the power dissipated in the medium in the
presence of classical external electric field of frequency ω
and the amplitude, numerically equal to Evc(R) [11]. In
this respect the quantum mechanical problem is equiva-
lent to that of the classical oscillating polarization inside
the QW.

Summarizing, we give the following recipe for calculat-
ing the energy transfer rate. Suppose that inside the QW
we have the classical macroscopic quasistationary polar-
ization, oscillating with the frequency ω:

P(r, t) = dvc ψ(r, r) e−iωt + c.c. (17)

Then, solve the electrostatical problem (i.e., neglecting
retardation) and find the corresponding electric field

E(R, t) = E(R) e−iωt + c.c. (18)
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The latter, substituted into (16), will give the correct
quantum mechanical decay rate if the complex dielectric
function of the organics is known (independently of its mi-
croscopic structure). Both the microscopic dipole approx-
imation and the macroscopic description of the organic
medium are valid as long as the obtained electric field is
slowly varying in space on the molecular scale. This con-
dition is fulfilled in all cases considered below, since the
typical wave vectors of excitons as well as e-h pairs in the
QW are small compared to the inverse lattice constant
(and the localization length is larger than the lattice con-
stant). The expression (16) will be the starting point for
our further considerations (see also [7]).

3 Free excitons

The energy transfer from free excitons was briefly con-
sidered in reference [7]. Here we perform a more detailed
study of this case.

First, we specify the geometry of the problem, which is
the same for all subsequent sections. We consider a sym-
metric structure, consisting of a semiconductor QW of
thickness Lw between two barriers of thickness Lb each,
the whole semiconductor structure being surrounded by
thick slabs of an organic material (actually, we assume
each slab to be semi-infinite). We assume that in the fre-
quency region here considered the semiconductor back-
ground dielectric constant εb is real and the same for the
well and the barrier, while that of the organic material ε̃
is complex. For simplicity we assume the organic material
to be isotropic (generalization to the anisotropic case is
straightforward). So, the dielectric constant to be used in
equation (16) as well as in the Poisson equation below, is

εij(r) =

{
εb δij , |z| < Lw/2 + Lb ,
ε̃ δij , |z| > Lw/2 + Lb ,

(19)

where the z-axis is chosen to be along the growth direc-
tion, z = 0 corresponding to the center of the QW.

We adopt a simplified microscopic quantum mechani-
cal model of a 2D Wannier-Mott exciton, in which the po-
larization (Eq. (17)) can be taken to vanish for |z| > Lw/2
and inside the well to be given by the product of the 1s-
wave function of the relative motion of the electron and
hole at the origin, with the the lowest subband envelope
functions for the electron and hole in the approximation
of the infinitely deep well and finally with the wave func-
tion of the center-of-mass motion, all of them normalized
according to equation (1). Thus, we have

P(r) = dvc

√
2

πa2
B

2

Lw
cos2

(
πz

Lw

)
eiKr‖

√
S

, (20)

where S is the in-plane normalization area, K is the in-
plane wave vector of the center-of-mass motion, r‖ ≡ (x, y)
– the in-plane component of r and aB is the 2D 1s-exciton
Bohr radius [8]. We choose as x the direction of the in-
plane component of the exciton dipole moment dvc, pre-
ferring to consider the polarization not with respect to the

wave vector, but to some fixed frame. This little complica-
tion is justified since next to the free exciton we intend to
study the case of the localized exciton, i.e., a system with
broken 2D translational symmetry. Evidently, we need to
consider two cases: dvc being parallel and perpendicular
to the QW plane. We will refer to them as X and Z po-
larizations respectively. When dealing only with free ex-
citons in a single well, three modes of different symmetry
would be identified: longitudinal (L), transverse (T) and
perpendicular (Z). The L and Z modes correspond to the
X and Z polarizations above, (their energies are split by
the depolarization shift, but this is immaterial for the fol-
lowing). For the T mode the dipole-dipole interaction here
considered vanishes [4].

The corresponding electric field E(r) ≡ −∇ϕ(r) can
be obtained from the solution of the Poisson equation (the
charge density being ρ(r) ≡ −∇ ·P(r))

ε(z)∇2ϕ(r) = 4π∇ ·P(r) , (21)

with the appropriate boundary conditions at z = ±Lw/2
and at z = ±(Lw/2+Lb), i.e., continuity of the tangential
component of the electric field E(r) and of the normal
component of the electric displacement D(r) = ε(z)E(r).
Writing ϕ(r) = φ(z) eiKr‖ , we have the equation for φ(z):[

d2

dz2
−K2

]
φ(z) =

{
4πρ(z)/εb , |z| < Lw/2 ,
0 , |z| > Lw/2 ,

(22)

where

ρ(X)(z) = iKxLw ρ0 (1 + cos qz) , (23)

ρ(Z)(z) = −qLw ρ0 sin qz , (24)

ρ0 =

√
2

πa2
B

dvc
√
SL2

w

, q ≡ 2π/Lw (25)

with the boundary conditions that φ(z) and ε(z) dφ(z)/dz
should be continuous at the four interfaces. The corre-
sponding solution in the organic material (for z > Lw/2+
Lb) is given by

φ(z) = ρ0CK e−K(z−Lb−Lw/2), (26)

C
(X)
K = −

iKx

K

8π2 q

K (K2 + q2)

×
sinh (KLw/2)

εb sinh (KLb +KLw/2) + ε̃ cosh (KLb +KLw/2)
,

(27)

C
(Z)
K =

8π2 q

K (K2 + q2)

×
sinh (KLw/2)

εb cosh (KLb +KLw/2) + ε̃ sinh (KLb +KLw/2)
·

(28)
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Fig. 2. Free L-exciton (solid line) and Z-exciton (dashed line)
lifetime τ (ns) versus the in-plane wave vector K (cm−1). dvc =
0.1 eaB, Lw = 60 Å, Lb = 40 Å, εb = 6, ε̃ = 4+3i (a); the same,
but εb = 4, ε̃ = 6 + 3i (b).

Thus, the electric field penetrating the organic material is
given by

E(r) = [−iK +Kez]φ(z) eiKr‖ . (29)

Now we simply substitute this electric field into (16) and
get the decay rate:

1

τ
=

S

2π~
Im ε̃

∫ +∞

Lb+Lw/2

2K2 |φ(z)|2 dz

=
Im ε̃

π2~
|dvc|2

a2
B

K |CK|2

L4
w

, (30)

where we have considered the absorption only at
z > Lw/2 + Lb (considering also the organic material in
z < −Lw/2− Lb, τ would be twice shorter).

We evaluate τ from equation (30) for parameters rep-
resentative of II-VI semiconductor (e.g., ZnSe/ZnCdSe)
quantum wells [12]: εb ≈ 6, dvc ≈ 0.1 eaB (about 12 De-
bye, the Bohr radius is taken to be 25 Å) and of organic
condensed media such as metallophthalocyanines [13] or

Fig. 3. Free L-exciton lifetime τ (ns) versus the in-plane wave
vector K (cm−1) for three well widths: Lw = 20 Å (dotted
line), Lw = 40 Å (dashed line), Lw = 60 Å (solid line). Other
parameters are Lb = 40 Å, εb = 6, ε̃ = 4 + 3i.

fullerenes [14] (ε̃ ≈ 4+3i). We consider two cases: dvc lying
in the QW plane, K‖dvc (L-exciton) and dvc perpendic-
ular to the QW plane (Z-excitons). Taking Lw = 60 Å,
Lb = 40 Å, we plot τL and τZ as functions of K for εb = 6,
ε̃ = 4 + 3i and εb = 4, ε̃ = 6 + 3i in Figures 2a and 2b.
It is seen from the plot, that the lifetime does not depend
drastically on the polarization and the real parts of di-
electric constants. Figure 3 shows that the dependence on
Lw is also weak, while Lb (Fig. 4), when grows, gives an
obvious exponential factor (clearly seen from the hyper-
bolic functions in the denominators of (27, 28)). The most
interesting dependence is that on K. We see, that τ ex-
hibits a minimum at Kmin ∼ 1/Lb. This dependence may
be easily understood if one recalls that the dipole-dipole
interaction between two planes behaves like

V (K, z) ∼ K e−Kz , (31)

which, when substituted into the Fermi Golden Rule gives
the correct asymptotics τ ∼ 1/K at K → 0 and expo-
nential growth at K → ∞. The dipole-dipole interaction
in organic-inorganic heterostructures in a similar planar
configuration has been studied previously in reference [4],
where the dipole-dipole interaction was responsible for the
hybridization of Frenkel and Wannier excitons with the
same wave vector.

Considering at first a quasi-thermalized exciton distri-
bution, typical values of K at a temperature ∼ 100 K
are ∼ 3 × 106 cm−1. The corresponding energy trans-
fer lifetime (tens of picoseconds) is much less than the
exciton recombination lifetime which is about 200 ps in
II-VI semiconductor QWs, as reported by different au-
thors (Ref. [12] and references therein, Ref. [15]). We re-
mark that for the case of free excitons in a quantum
well, the effective radiative lifetime (which, assuming a
thermal distribution, increases linearly with temperature)
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Fig. 4. Free L-exciton (solid line) and Z-exciton (dashed line)
lifetime τ (ns) versus the barrier width Lb (Å). K = 106 cm−1,
Lw = 60 Å, εb = 6, ε̃ = 4 + 3i.

is determined by the population transfer from non-
radiative excitons with largeK to small K excitons under-
going a fast radiative decay [16]. Thus, the dipole-dipole
energy transfer mechanism considered here proves to be
efficient enough to quench a large fraction of the semicon-
ductor excitons, thereby activating the organic medium
luminescence. Moreover, the intraband relaxation of ex-
citons due to the acoustic phonon scattering occurs at
time scales of the order of 20–30 ps at 10 K [15], which
is larger than the minimal transfer lifetime, obtained here
(less then 10 ps for Kmin ∼ 106 cm−1). This makes it
possible to excite the QW in a way to produce the initial
nonequilibrium distribution of excitons with K = Kmin,
tuning the frequency of the excitation pulse to exceed the
energy ~ωexc(Kmin) of the exciton with K = Kmin by
one LO-phonon frequency ΩLO (since in II-VI semicon-
ductors the free-carrier-to-exciton relaxation is governed
mainly by LO-phonon scattering and happens at times of
about 1 ps [15,17–19]), or an integer multiple of ΩLO, if
the exciton binding energy is larger than ~ΩLO. A numeri-
cal estimate for ZnSe gives ~ωexc(Kmin)−~ωexc(K = 0) ∼
1 meV, while ~ΩLO ≈ 31 meV [15], so that the following
kinetics of excitons at K ∼ Kmin is governed mainly by
the acoustic phonons. Finally, another possibility would
be to resonantly pump excitons with the appropriate K
by using a coupling grating configuration [20].

Analogous calculations may be performed for the case
of III-V semiconductor materials. We take εb ≈ 11, dvc ≈
0.05 eaB and plot the L-exciton lifetime versus the wave
vector K for several values of Lw (Fig. 5, analogous to
Fig. 3 for II-VI materials). All other parameters are the
same as in Figure 3. We see that the lifetime is longer com-
pared to that in Figure 3 by about an order of magnitude,
which is due to the larger values of aB and εb. However,
the energy transfer discussed here is still efficient enough
because the effective exciton recombination time in III-V
materials is also larger (about 1 ns [21]),

Fig. 5. The same as in Figure 3, but for the
III-V-semiconductor compounds (εb = 11, dvc = 0.05 eaB), all
other parameters being the same as in Figure 3.

4 Localized excitons

Now we turn to the situation when the QW width fluctu-
ations, alloy disorder or impurities localize the 2D exciton
(such a situation is more frequent for II-VI semiconduc-
tor quantum wells than for III-V ones). Then, the wave
function of the center-of-mass exciton motion Φ(r‖) is no
longer just a plane wave, and the corresponding polariza-
tion is given by

P(r) = dvc

√
2

πa2
B

2

Lw
cos2 (

πz

Lw
)Φ(r‖) , (32)

which implies that Φ(r‖) is normalized according to∫
d2r‖ |Φ(r‖)|

2 = 1. (33)

The solution of the Schrödinger equation for a particle in
the random potential, caused by the QW width fluctua-
tions and the alloy disorder is beyond the scope of the
present paper (much work has been done in this field, e.g.
see [22] and references therein). We can mention only some
general properties that Φ(r‖) should have: (i) it should be
localized within some distance L & Lw, (ii) it should be
smooth and without nodes. A a consequence, its spatial
Fourier expansion should contain mainly the components
with wave vectors K . 1/L.

Expanding the wave function Φ(r‖), the charge density
ρ(r) and the potential ϕ(r) into plane waves

Φ(r‖) =

∫
d2K

(2π)2
ΦK eiKr‖ ,

ρ(r) =

∫
d2K

(2π)2
ρK(z) eiKr‖ ,

ϕ(r) =

∫
d2K

(2π)2
ϕK(z) eiKr‖ , (34)
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we again obtain equation (22), but the charge density is
now given by

ρ
(X)
K (z) = iKxLw ρ̃0 LΦK (1 + cos qz) , (35)

ρ
(Z)
K (z) = −qLw ρ̃0 LΦK sin qz , (36)

ρ̃0 =

√
2

πa2
B

dvc

LL2
w

· (37)

The solution is

ϕK(z) = ρ̃0 LΦKCK e−K(z−Lb−Lw/2), (38)

with the same CK, given by (27, 28). For the decay rate
we obtain:

1

τ
=

Im ε̃

2π~

∫ +∞

Lb+Lw/2

dz

∫
d2K

(2π)2
2K2 |ϕK(z)|2 (39)

=
Im ε̃

π2~
|dvc|2

a2
B

1

L4
w

∫
d2K

(2π)2
K |ΦK|

2 |CK|
2. (40)

It is possible to get some information about the decay
rate (40) based only on general properties of the wave
function, mentioned above. We have three length scales in
our problem: Lw, Lb and L. First, we have the condition
Lw . L. Since wave vectors with KL & 1, being cut
off by |ΦK|2, do not contribute to the integral, we may
set KLw → 0. The subsequent analysis depends on the
relation between Lb and L.

If Lb � L, we may put KLb → 0 as well. Then we
have

C
(X)
K

L2
w

−→ −
2πi

ε̃

Kx

K
,

C
(Z)
K

L2
w

−→
2π

εb
(41)

and the integral may be estimated as

1

τX
= A

2

~
Im ε̃

|ε̃|2
|dvc|2

a2
B

1

L
,

1

τZ
= A

4

~
Im ε̃

ε2b

|dvc|2

a2
B

1

L
(42)

up to a numerical factor A ∼ 1, determined by the de-
tailed shape of ΦK. We have set the average value of K
over the wave function ΦK to be A/L and, if for the X
polarization we assume ΦK to be cylindrically symmetric
(which may be considered as the average over the realiza-
tions of disorder), then the numerical factor A is the same
for both cases.

In the opposite limit, Lb � L (which also implies
Lb � Lw), we may set ΦK = ΦK=0 since the values of
K, contributing to the integral, are determined by CK,
(namely, K . 1/Lb) which in this limit takes the form

C
(X)
K

L2
w

−→ −
iKx

K

4π

(ε̃+ εb) eKLb + (ε̃− εb) e−KLb
, (43)

C
(Z)
K

L2
w

−→
4π

(ε̃+ εb) eKLb − (ε̃− εb) e−KLb
· (44)

Fig. 6. Localized X-exciton lifetime τ (ns) versus the local-
ization length L (Å) (solid line) along with the limiting cases
L � Lb and L � Lb (dashed lines). Lw � L, Lb = 40 Å,
εb = 6, ε̃ = 4 + 3i.

Estimating the integral, we have

1

τX
= A

1

π~
Im ε̃

|ε̃+ εb|2
|dvc|2

a2
B

|ΦK=0|2

L3
b

, (45)

where |ΦK=0|2 ∼ L2, which follows from the normalization
condition. The expression for 1/τZ differs from this by an
additional factor of 2 and the factor A may be different in
the two cases. It is determined by the values of ε̃, εb

A =

∫ ∞
0

4ξ2 dξ∣∣∣∣ ε̃+ εb

|ε̃+ εb|
eξ ±

ε̃− εb
|ε̃+ εb|

e−ξ
∣∣∣∣2
, (46)

and is bounded by

π2

12
=

∫ ∞
0

ξ2 dξ

cosh2 ξ
< A <

∫ ∞
0

ξ2 dξ

sinh2 ξ
=
π2

6
· (47)

So we see that at L � Lb the decay rate is proportional
to L2, at L� Lb – to L−1, therefore it has a maximum at
some L ∼ Lb. This is in agreement with the results of the
previous section, since the plane waves, giving the largest
contribution to the wave function Φ(r‖) and thus deter-
mining the decay rate, have the values of wave vector of
the order of K ∼ 1/L and we have seen that wave vectors,
corresponding to the shortest lifetimes were Kmin ∼ 1/Lb.

To illustrate these considerations, we choose a specific
example of the localized wave function – that of the ground
state in the isotropic parabolic potential:

ΦK =
√

4πL e−K
2L2/2 , (48)

which obviously has all the necessary features mentioned
in the beginning of this section. For this wave function
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Fig. 7. Localized X-exciton (solid line) and Z-exciton (dashed
line) lifetime τ (ns) versus the localization length L (Å). Lw =
10 Å, Lb = 40 Å, εb = 6, ε̃ = 4 + 3i.

the integral in (40) may be evaluated numerically for ar-
bitrary parameters L, Lw, Lb (we remind that only phys-
ically relevant are L & Lw). The results of the calculation
(τ versus L) are plotted in Figures 6 and 7 along with the
asymptotic dependencies for Lb = 40 Å, εb = 6, ε̃ = 4 + 3i
(we have set Lw → 0 for the plots in Fig. 6, but a more
specific value Lw = 10 Å was chosen for Fig. 7). In the
limit L� Lb the coefficient A =

√
π/2, the coefficient for

L� Lb, given by (46) was calculated numerically.
We also plot the dependence, analogous to that in

Figure 7, for parameters typical of III-V-semiconductors:
dvc/eaB = 0.05 and εb = 11 (Fig. 8); analogously to the
previous section, we obtain larger lifetimes, than those for
II-VI-semiconductors.

5 Free carriers

Finally, we consider the situation, when the carriers are
not bound into excitons, thus forming a 2D plasma. We as-
sume electrons and holes to be quasi-thermalized within
corresponding bands (considering only one subband for
each band), distributed according to the ideal Fermi gas
law with the temperature T and the chemical potentials
µe and µh for electrons and holes respectively (we set the
Boltzmann constant equal to unity everywhere in this sec-
tion, measuring the temperature in the units of energy).
For an ideal 2D Fermi gas the chemical potential µ is re-
lated to the concentration n via

eµ(n,T )/T = eµ0(n)/T − 1 , µ0(n) =
2π~2 n

m
, (49)

where µ0 is the chemical potential at the zero tempera-
ture, m is the corresponding (electron or hole) mass, spin
degeneracy is not taken into account (i.e., all concentra-
tions are those of particles with a given spin).

Fig. 8. The same as in Figure 7, but for the
III-V-semiconductor compounds, other parameters being
the same as in Figure 7.

If Ne (Nh) is the total number of electrons (holes) in
the system, then the total recombination rate due to the
energy transfer here considered can be written as

−
dNe

dt
= −

dNh

dt
=
∑
k,k ′

fek f
h
k ′

τ(k + k ′)
, (50)

where fek, fhk ′ are the Fermi occupation numbers and
τ(k + k ′) is the corresponding recombination time for a
single electron-hole pair with 2D wave vectors k and k ′.
It depends only on the total momentum K = k+ k ′ since
the wave function of the pair is simply

ψ(r, r) =
2

Lw
cos2

(
πz

Lw

)
ei(k+k ′)r‖

S

=
2

Lw
cos2

(
πz

Lw

)
eiKr‖

S
, (51)

the in-plane motion being described by a direct product of
two plane waves. The corresponding polarization is given
by (20), where the factor

√
2/(πa2

B) must be replaced by

1/
√
S. For the pair recombination rate we obtain the ex-

pression (30), multiplied by the factor πa2
B/2S:

1

τ(K)
=

1

2π~
|dvc|2

SL4
w

Im ε̃ K|CK|
2 , (52)

which depends on the normalization area. Such a depen-
dence is however immaterial: rewriting (50) for the 2D
densities ne,h = Ne,h/S and transforming the sum into an
integral, the total recombination rate becomes:

−
dne

dt
= −

dnh

dt
=

∫
d2k d2k ′

(2π)4

Sfek f
h
k ′

τ(k + k ′)
· (53)

In the general case this integral cannot be calculated
analytically, but the situation simplifies significantly in
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the classical limit (T � µe0, µ
h
0 ). The occupation numbers

then reduce to the Boltzmann distribution:

fe,hk = exp

(
−
~2k2

2me,hT
+
µe,h(ne,h, T )

T

)
(54)

and, if we perform the change of the integration variables

k , k ′ −→ K = k + k ′ , k̃ =
mh k−me k ′

me +mh
(55)

(k̃ being the momentum of the relative motion) and use

the fact that τ does not depend on k̃, the integral is factor-
ized. The Gaussian integral over k̃ gives a normalization
factor and finally we obtain

−
dne,h

dt
=
~nenh Im ε̃

(me +mh)T

|dvc|2

L4
w

×

∫
d2K

(2π)2
K |CK|

2 exp

(
−

~2K2

2(me +mh)T

)
·

(56)

If we introduce the “thermal length” LT defined by

L2
T ≡

~2

2(me +mh)T
, (57)

the integral in (56) formally coincides with that in (40)
for the Gaussian wave function. Then the recombination
rate may be written as

−
dne,h

dt
= nenhS

∫
d2K

(2π)2

4πL2
T

τ(K)
e−K

2L2
T

=
π a2

B

2

nenh

τloc
, (58)

where τloc is the lifetime of the exciton from the previous
section with the Gaussian wave function (48), localized at
the length LT . Of course, the recombination rate of free
carriers cannot depend on the exciton Bohr radius and a2

B
in the numerator (58) just cancels the analogous factor
in τloc.

The process under consideration is a bimolecular de-
cay rather then a monomolecular one. To determine the
appropriate characteristic time we write down the kinetic
equations (53) in the form:

dne

dt
=
dnh

dt
= −nenh g(ne, nh, T ) . (59)

In the classical limit g = g(T ) does not depend on the
concentrations at all. Suppose for a while that this situ-
ation takes place. We assume that the concentrations are
equal ne = nh = n (e.g., this is the case for an optically
pumped undoped well). Then the solution for n(t) is

n(t) =
n(0)

1 + gn(0) t
· (60)

So, the transfer rate may be defined as gn(0) in the clas-
sical case and in the situation when the degeneracy of the

Fig. 9. The inverse recombination rate constant g(n, T )−1

(cm−2 s) versus temperature T (K) for different carrier con-
centrations ne = nh = n = 10n0, 30n0, 100n0 (solid lines,
n0 ≡ 1010 cm−2). The dashed line (n = n0) also represents the
classical limit, which is concentration independent. The pa-
rameters are εb = 6, me = 0.16m0, mh = 0.6m0, Lw = 60 Å,
Lb = 40 Å, ε̃ = 4 + 3i.

plasma becomes significant, ng(n) has the meaning of the
instantaneous transfer rate. In the following we analyze
the behaviour of the inverse recombination rate constant
g(n, T )−1 whose dependence on n is then a measure of de-
generacy of the electron-hole gas, and which, divided by
n, gives the effective lifetime.

The results of the numerical integration of (53) for
the II-VI parameters (εb = 6, me = 0.16m0, heavy
holes with mh = 0.6m0, X-polarization), 60 Å well,
40 Å barrier, ε̃ = 4 + 3i, are shown in Figure 9. We
plot g(n, T )−1 as a function of temperature in the range
3 K ≤ T ≤ 300 K for several values of the concentrations
1011 cm−2, 3× 1011 cm−2, 1012 cm−2 along with the lim-
iting case (58), which is reached even at low temperatures
for concentrations lower than n0 = 1010 cm−2 (actually,
the curve for n = n0 is indistinguishable from the classical
curve in all the temperature range). This is in agreement
with the fact that the corresponding “Fermi energies” for
electrons and holes are µe0(n0) = 3.5 K, µh0 (n0) = 0.93 K.
The “thermal length” at T = 3 K is LT = 140 Å (corre-
spondingly, for T = 300 K LT = 14 Å), which explains the
monotony of the classical dependence on T : it is nothing
different, but the left part of the plot in Figure 6, properly
renormalized to the case of free carriers.

We see that the corresponding effective lifetime (τ =
1/(ng), according to the above considerations) is of the
order of 1 ns. The relaxation to excitons by means of LO-
phonon emission, as already has been mentioned, takes
about 1 ps in II-VI materials [19], if the density is not too
high (n � 1/a2

B). This means that the carriers actually
do not even reach the thermal quasi-equilibrium, quickly
binding into excitons; the results of the two previous sec-
tions are thus much more relevant. However, at higher
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densities, n & 1/a2
B, when the plasma phase is favoured

with respect to the excitonic phase [23,24] and, on the
other hand, the effective energy transfer rate itself is in-
creased (1/τ ∝ n, for arbitrary momentum distribution,
not necessarily equilibrium), the rate of the dipole energy
transfer from the free carriers may be comparable with
rates of other processes, giving some information on the
carrier kinetics as well.

Calculations were also performed for the case of
III-V-type materials. We do not present them on a sep-
arate figure since they have no significantly different fea-
tures with respect to what has already been mentioned in
the previous sections.

6 Conclusions

We have studied the dipole-dipole energy transfer from an
excited semiconductor quantum well to a light-emitting
organic medium, considering different excitation regimes
and experimental conditions. According to our results, the
kinetics of the initial free carrier population (produced,
e.g., by the electrical pumping) is not significantly changed
by the presence of the organic medium, since the energy
transfer from free carriers turns out to be slower than the
process of exciton formation (unless excitation density and
temperature are very high). On the other hand, the sub-
sequent evolution of free or localized excitons is strongly
affected by the presence of the organic medium. In an iso-
lated QW the effective lifetime of the exciton distribution
may be of several hundred ps. However, excitons coupled
to the organic medium efficiently transfer their energy to
the organic molecules before they can recombine inside
the QW. For quantum wells based on the II-VI semicon-
ductors and in a realistic configuration, such transfer may
occur at time scales of the order of 10 ps. This simple
physical picture shows that the system studied here may
be promising for optical devices based on hybrid organic-
inorganic structures, combining the good transport prop-
erties of inorganic semiconductors and the large oscillator
strengths of organic materials.

Finally, we wish to stress that our model calculations
can be easily applied to any hybrid multilayer structure
and could be generalized to the case in which the structure
is embedded in a microcavity.
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